

Smart and Sustainable Living Communy in High Dense Asian Cities: Support from Electric Vehicle Charging Infrastructure Planning and Intelligent Charging System

Qiang Meng

Professor, Department of Civil and Environmental Engineering, National University of Singapore

ceemq@nus.edu.sg

VIRTUAL | VIRTUEL

XVI WORLD WINTER SERVICE AND ROAD RESILIENCE CONGRESS XVI° CONGRÈS MONDIAL DE LA VIABILITÉ HIVERNALE ET DE LA RÉSILIENCE ROUTIÈRE XVI CONGRESO MUNDIAL DE VIALIDAD INVERNAL Y RESILIENCIA DE LA CARRETERA

Canada

Contents

□ Introduction

□ Electric Vehicle Charging Infrastructure Planning

□ Intelligent Electric Vehicle Charging Systems

Conclusions

Introduction (1/5)

□ Features of High Dense Asian City

- Singapore is a sovereign island city-state in Southeast Asia.
- Singapore has almost 5.7 million residents with the third greatest population density in the world (7,804 persons/km²).
- Singapore has nearly one million vehicles on Singapore's roads. More than 600,000 of those (~60%) are private and rental cars.
- Roads take up 12% of the country's total land area, which is a far higher percentage than in many larger countries.

Land use master plan (2019)

Introduction (2/5)

□ Features of High Dense Asian City (cont'd)

HDB (Housing & Development Board) Tall Buildings

4

Introduction (3/5)

□ Smart and Sustainable Living Community

- First unveiled in 2014
- Developing estates that provide eco-friendly and smart features for a smart and sustainable living
- Creating a better living environment for residents by the use of smart technologies in the planning, development, and management of HDB towns

Introduction (4/5)

Current Electric Vehicle Population and Charging Facilities in Singapore

2,119 EV Charging Points

Cumulative EVs					Supplier/ owner	Location	Number	Price	Charger type	
2015	2016	2017	2018	2019	2020	BlueSG	Roadsides, near HDB carparks,	1,515 points (295 points	S\$1/h for the first 3 hours and S\$2 per	Type 2 AC
1	12	314	560	1,120	1,217		community clubs	open to private	hour thereafter	
-	-	-	102	133	32			chargers)		
						SP Group	Commercial buildings	Over 340	\$\$0.46/ kWh (AC)	Type 2 AC and Combo
4	3	3	23	50	50		shopping malls,	locations	550.56/ KWII(DC)	2 00
							business parks			
5	15	317	685	1,303	1,299		sites			
						GreenLots	Especially in condominiums	121 points	S\$0.5/ kWh (7.4 kW) S\$ 0.55/ kWh (43/50 kW)	3.7kW/7.4kW/22kW AC 50 kW DC
						BYD		122 points		AC 40kw& 80kw
						Shell	Only at select Shell Stations	18 points	S\$0.55/kWh	Type 2 AC and Combo 2 DC
						Tesla	Orchard, Millenia walk	3 points	calgary 2022	Tesla supercharger 1250kW fast DC enarging) 6
	C 2015 1 - 4 5	2015 2016 1 12 - - 4 3 5 15	2015 2016 2017 1 12 314 - - - 4 3 3 5 15 317	Cumulative EVs 2015 2016 2017 2018 1 12 314 560 - - - 102 4 3 3 23 5 15 317 685	Cumulative EVs 2015 2016 2017 2018 2019 1 12 314 560 1,120 - - - 102 133 4 3 3 23 50 5 15 317 685 1,303	Cumulative EVs2015201620172018201920201123145601,1201,217102133324332350505153176851,3031,299	Cumulative EVs Supplier/owner 2015 2016 2017 2018 2019 2020 1 12 314 560 1,120 1,217 - - - 102 133 32 4 3 3 23 50 50 5 15 317 685 1,303 1,299 GreenLots BYD Shell Tesla	Cumulative EVsSupplier/ ownerLocation2015201620172018201920201123145601,1201,217102133324332350505153176851,3031,299GreenLotsFFSpecially in condominiumsSPCBVDShellOnly at select Shell StationsShellCommandOrchard, Millenia walk	Cumulative EVsSupplier/ ownerLocationNumber201520162017201820192020BlueSGRoadsides, near HDB carparks, community clubs and schools1,515 points (295 points open to private chargers)433235050SP GroupCommercial buildings, shopping malls, business parks and industrial sitesOver 340 points in 71 locations5153176851,3031,299GreenLotsEspecially in condominiums121 pointsBYD122 points122 points122 points122 points122 pointsBYD122 points18 points18 points3 points3 points	Cumulative EVsSupplier/ ownerLocationNumberPrice2015201620172018201920201123145601,1201,217102133324332350505153176851,3031,2995153176851,3031,299651,3031,29950505153176851,3031,299651,3031,299505153176851,30361,1001,2195051531750505153176851,3037515317505061,3031,2995050715505050715505071550507155050715505081,0031,29981,0031,29991211219122120912212091221209122120912212091221209122120912212091221209122120

Introduction (5/5)

EV and Charging Infrastructure Roadmap of Singapore

	 Cease new diesel The price of EV a COE structure for Funding & incention Funding solar power Eight EV-ready T 	car & taxi registrations and ICE to be similar r EVs and other vehicles ives for open EV carparks r	• All new construct EV-read	ew buildings under truction are designated eady		
2020	2025	2030	2035	2040		
 EV Early Adoption Incentive (EEAI) was introduced Road taxi/pricing schemes were revised EV mobility initiatives are officially started 		 All new car & taxi reg of cleaner-energy Fully electric and plug 33% of overall cars 50% COE for EVs 50% COE for EV taxi 60000 EV charging po all towns EV ready New building plans to 	gistrations to be g-ins taking up ints have 80% EV-	 Phase out ICE vehicles All vehicles run on cleaner energy 100% cleaner energy bus fleet 		
		ready car parks		calgar 2022	2 CANADA	

7

Electric Vehicle Charging Infrastructure Planning (1/19)

- EV Charging Facility Deployment Problem To fully satisfy the EV charging demand for urban mobility
 - 1st issue: Where to build charging stations?
 - 2nd issue: What type of charging infrastructure should be deployed?
 - 3nd issue: How much capacity should be allocated at each station?

Electric Vehicle Charging Infrastructure Planning (2/19)

Existing Approaches in the Literature

- Bi-level programming models: computational intractable for largescale network and may be problematic (travel demand!= charging demand)
- Single-level optimization models: acceptable in computation efficiency, but SO may not reach due to different EV stakeholders
- Micro-level data-based method: appealing but time-consuming and labor-intensive

A tangible approach is needed for EV charging infrastructure planning for a dense city

2014:

- Car fleet size: 616,609 cars
- Taxi; 125,000 km/taxi/year

Electric Vehicle Charging Infrastructure Planning (3/19)

Key EV & Charging Infrastructure Profiles for Modelling

How many types of EVs in a city?

Private EVs, 1-shift and 2-shift EV taxis

Normal (level-2) charging & Fast charging

Residential carparks and petrol stations

- EV charging frequency depends on EV driving range
- How many types of charging modes?
- Different charging efficiencies two charging schemes
- Candidate charging sites

Prevailing EV Brands and Vehicle Profiles

EV Brand (model year)	Battery capacity	Range^	Price*
Renault Zoe (2017)	22 kWh	149 miles^^	£14,245
Mitsubishi i-MiEV (2017)	16 kWh	59 miles	\$23,845
Volkswagen e-Golf (2016)	24.2 kWh	83 miles	\$28,995
Ford Focus Electric (2017)	33.5 kWh	115 miles	\$29,995
Nissan Leaf (2017)	30 kWh	107 miles	\$31,545
Fiat 500e (2017)	24 kWh	84 miles	\$32,780
Chevrolet Bolt EV (2017)	60 kWh	238 miles	\$37,495
Mercedes-Benz B250e (2017)	28 kWh	87 miles	\$40,825
BMW i3 (2017)	33 kWh	114 miles	\$43,395
Tesla Model S (2017)	60-100 kWh	210-315 miles	\$69,200-\$135,700
Tesla Model X (2017)	75-100 kWh	238-289 miles	\$90,000-\$140,000

- 30-35 kWh batteries are often used and their driving range are between 110 and 115 miles
- 32 kWh battery with 180 km of driving range

(Assumption)

Electric Vehicle Charging Infrastructure Planning (4/19)

Comparison of Charging Modes (Hydro-Québec, August 2015)

	Level 1	Level 2	Fast charge
Voltage	120 V	208 or 240 V	200 to 450 V
Current type	AC	AC	DC
Useful power	1.4 kW	7.2 kW	50 kW
Maximum output	1.9 kW	19.2 kW	150 kW
Charging time ^a	12 hª	3 hª	20 min ^ь
Connector	J1772	J1772	J1772 Combo, CHAdeMO and Supercharger

a. Charging time of a completely discharged 16-kWh battery at useful power.

b. Charging time to 80% charge, i.e., 12 kWh. Fast charging cannot be sustained to a full charge.

Reamrk: Very few batteries can support the maximum power at 100 kW. J1772 Combo standard sets limit the rated power to 50 kW for the fast charge

Charging equipment

Charger

Inlet

Connector Cord

EV Coupler

EVSE

Battery

Charging efficiency for a 32 kWh-battery:

- Level-2 charging mode: about 6 hours to make a full charge
- Fast charging (FC) mode: about 40 minutes to get 80% State of Charge (SoC)

Utilitv

Control Device

Electric Vehicle Charging Infrastructure Planning (5/19)

Electric Vehicle Charging Infrastructure Planning (6/19)

Electric Vehicle Charging Infrastructure Planning (7/19)

Electric Vehicle Charging Infrastructure Planning (8/19)

□ 4-step Method

Step 4:

Electric Vehicle Charging Infrastructure Planning (9/19)

Case Study

Data Sources and Data Preparation

- Official databases released by Land Transport Authority (LTA) and Housing & Development Board (HDB) in Singapore
- Two scenarios with different driving ranges
- Scenario A with driving range of 180 km (current situation)
- Scenario B with driving range of 320 km (near future)

Data item	Specification	Data source	Usage/purpose
HDB car park information	car park location and hourly avail- able parking lots	https:// api.data.gov.sg/v1/ transport/carpark- availability	Candidate sites for Level-2 charging facilities & to esti- mate the number of private EVs at each residential com- munity
Taxi Availabil- ity	real-time loca- tions of available taxis across the island (updated every 15 seconds)	<pre>https:// api.data.gov.sg/v1/ transport/taxi- availability</pre>	To estimate the count of taxi energy replenishments at each petrol station
Petrol station information	locations of petrol stations	<pre>http:// www.sgcarmart.com/news/ carpark_index.php?LOC= all&TYP=petrol</pre>	Same as the above one
Transport statistics in Singapore (2017)	private vehicle population, av- erage annual kilometers trav- eled per private vehicle, taxi fleet, average daily number of taxi trips, average engaged mileage per trip	https://www.lta.gov.sg/ content/ltaweb/en/ publications-and- research.html	For the charging frequency analysis, demand generation and distribution
Other taxi op- erational data	taxi utilization rate with engaged passengers, two- shift occupancy rate	https://www.lta.gov.sg/ apps/news/page.aspx?c= 2&id=766364af-eb2f- 4d2a-9575-1499d862777f https://www.lta.gov.sg/ apps/news/page.aspx?c= 2&id=8d105be4-5fa5- 4837-b26-300533288a03	For the determination of the fleets of one-shift and two-shift EV taxis

Electric Vehicle Charging Infrastructure Planning (10/19)

Input Data and Remarks

EV fleet size:

 $N_{\rm EVcar} = 0.1 \times 502, 187 = 50, 218.7,$

 $N_{\rm EVtaxi1} = 0.3 \times 23,140 \times (1 - 68\%) = 2,221.44$

 $N_{\rm EVtaxi2} = 4,720.56$

The average number of occupied parking lots at HDB car park *i* (the hourly available parking lots during 11pm to 4am) to estimate the spatial distribution of private EVs, N_i

Parameter	Value
the penetration rate of FVs in planned year	0.1 for private EVs
the penetration rate of Evs in plained year	0.3 for EV taxis
the vehicle fleet	502,187 private cars
	23,140 taxis
the driving range	R = 180 km for Scenario A (Year 2020)
the driving range	R = 320 km for Scenario B (Year 2030)
average daily number of taxi trips	17.72 for the one-shift taxi
average daily number of taxi trips	26.19 for the two-shift taxi
average engaged mileages per trip	10.28 km/trip for the one-shift taxi
average engaged inneages per enp	10.01 km/trip for the two-shift taxi
average daily engaged working time	$\Phi_{\text{level2}} = 15$ hours for a Level-2 charging slot
average daily engaged working time	$\Phi_{\text{fast}} = 20$ hours for a fast charging slot
taxi utilization rate with engaged passengers	75%
the proportion of taxis on a two-shift system	68%
average annual kilometers traveled per pri-	17,800 km
vate car	
the one-shift EV taxis groups with different	$\{5\%-10\%: 0.15, 10\%-15\%: 0.25, 15\%-$
charging preference $\{\gamma_{j-1}, \gamma_j: \text{ percentage }\}$	20%': 0.25, ' $20%$ - $25%$ ':0.25, ' $25%$ - $30%$ ':0.05,
	·30%-35%··0.03 ·35%-40%··0.02}

The better way to estimate the count of taxi energy replenishment is based on taxi trajectories. Due to lack of such data, we use taxi proximity (real-time taxi availability) to petrol stations (i.e., occurrence frequency that a taxi mo \tilde{N}_i 's near a petrol station, within 25m range) to approximate the results of .

Electric Vehicle Charging Infrastructure Planning (11/19)

□ Candidate Sites

Electric Vehicle Charging Infrastructure Planning (12/19)

Charging Frequency Analysis

Daily mileage of private vehicles

17,800 km ÷ 365 days = 48.8 km/day

A full-charge private EV can serve

 $180 \text{ km} \div (48.8 \text{ km/day}) = 3.69 \text{ days}$

□ Assumptions

Car owners re-charge their vehicles when SOC <= 20% and make a full charge</p>

□ Average charging frequency for private EVs:

48.8 ÷ (180 ×80%) = 0.34 times per day (charge once for near three days)

		2013	2014
[4]	All Vehicles	974 170	972 037
1.4	Private Cars	540.063	536,882
	Other Cars	83,625	82,141
	Taxi	27,695	28,736
	Buses	17,509	17,554
	Goods & Other Vehicles	160,344	161.698
	Motorcycles	144,934	145,026
AN	INUAL AVERAGE QUOTA PREMIU	MOFC	OE
		2013	2014
[5]	Category A (Cars ≤ 1600cc & Taxis)	\$74,690	\$67,675
	Category B (Cars >1600cc)	\$78,712	\$73,282
	Category C (Goods Vehicles & Buses)	\$60,342	\$50,764
	Category D (Motorcycles)	\$1,757	\$4,027
	Category E (Open Category)	\$80,278	\$73,436
PR	IVATE VEHICLE ANNUAL MILEAG	E	
		2013	2014
[6]	Average Annual Kilometres Travelled per Vehicle	2	
1.4	Cars	17,800	17,500
	Private Hire Buses	51,800	54,400
	School Buses	54,100	53,400
	Light Goods Vehicles (≤ 3.5 tons)	30,000	30,500
	Heavy Goods Vehicles (> 3.5 tons)	38,100	39,900

Aotorcycles

12 800

Electric Vehicle Charging Infrastructure Planning (13/19)

Daily Mileages of Two Kinds of Taxis

Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17
18.0	18.4	18.1	17.5	17.1	17.6	17.8	17.7	18.0	17.5	17.6	17.3
10.0	9.9	10.0	10.2	10.2	10.2	10.4	10.3	10.3	10.4	10.7	10.8
27.2	27.7	27.2	25.6	25.2	25.9	26.0	25.9	26.3	25.9	25.7	25.7
9.4	9.3	9.3	10.1	10.0	10.2	10.3	10.1	10.2	10.3	10.4	10.5
	Jan-17 18.0 10.0 27.2 9.4	Jan-17 Feb-17 18.0 18.4 10.0 9.9 27.2 27.7 9.4 9.3	Jan-17 Feb-17 Mar-17 18.0 18.4 18.1 10.0 9.9 10.0 27.2 27.7 27.2 9.4 9.3 9.3	Jan-17 Feb-17 Mar-17 Apr-17 18.0 18.4 18.1 17.5 10.0 9.9 10.0 10.2 27.2 27.7 27.2 25.6 9.4 9.3 9.3 10.1	Jan-17 Feb-17 Mar-17 Apr-17 May-17 18.0 18.4 18.1 17.5 17.1 10.0 9.9 10.0 10.2 10.2 27.2 27.7 27.2 25.6 25.2 9.4 9.3 9.3 10.1 10.0	Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 18.0 18.4 18.1 17.5 17.1 17.6 10.0 9.9 10.0 10.2 10.2 10.2 27.2 27.7 27.2 25.6 25.2 25.9 9.4 9.3 9.3 10.1 10.0 10.2	Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 Jul-17 18.0 18.4 18.1 17.5 17.1 17.6 17.8 10.0 9.9 10.0 10.2 10.2 10.2 10.4 27.2 27.7 27.2 25.6 25.2 25.9 26.0 9.4 9.3 9.3 10.1 10.0 10.2 10.3	Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 Jul-17 Aug-17 18.0 18.4 18.1 17.5 17.1 17.6 17.8 17.7 10.0 9.9 10.0 10.2 10.2 10.2 10.4 10.3 27.2 27.7 27.2 25.6 25.2 25.9 26.0 25.9 9.4 9.3 9.3 10.1 10.0 10.2 10.3 10.1	Jan-17Feb-17Mar-17Apr-17May-17Jun-17Jul-17Aug-17Sep-1718.018.418.117.517.117.617.817.718.010.09.910.010.210.210.210.410.310.327.227.727.225.625.225.926.025.926.39.49.39.310.110.010.210.310.110.2	Jan-17Feb-17Mar-17Apr-17May-17Jun-17Jul-17Aug-17Sep-17Oct-1718.018.418.117.517.117.617.817.718.017.510.09.910.010.210.210.210.410.310.310.427.227.727.225.625.225.926.025.926.325.99.49.39.310.110.010.210.310.110.210.3	Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 Jul-17 Aug-17 Sep-17 Oct-17 Nov-17 18.0 18.4 18.1 17.5 17.1 17.6 17.8 17.7 18.0 17.5 17.6 10.0 9.9 10.0 10.2 10.2 10.2 10.4 10.3 10.3 10.4 10.7 27.2 27.7 27.2 25.6 25.2 25.9 26.0 25.9 26.3 25.9 25.7 9.4 9.3 9.3 10.1 10.0 10.2 10.3 10.1 10.2 10.3 10.1 10.4

Consider a taxi utilization rate of 75% (with passengers)

The average daily accumulative mileage:

One-shift taxi: 17.72 trips/day × 10.28 km/trip ÷ 75% = 243 km/day

Two-shift taxi: 26.19 trips/day × 10.01 km/trip ÷ 75% = 350 km/day

□ Average charging frequency for two types of EV taxis:

One-shift EV taxis: 243 ÷ (180 × 80%) = 1.69 times per day

Two-shift EV taxis: $350 \div (180 \times 80\%) = 2.43$ times per day

Every day, 1-shift EAV taxi needs to charge twice and 2-shift EAV taxi needs to charge three times.

Electric Vehicle Charging Infrastructure Planning (14/19)

One-shift EV Taxi Scenario

Taxi drivers would

(1) hope to make a full charge at night (off-work time),

(2) and take an extra energy replenishment during their working time when the SOC is low, e.g., 20%.

- 1st type charging activities: could be done at night at residential carparks (Level-2 charging facilities).
- Charging in day could be fulfilled by fast charging

Electric Vehicle Charging Infrastructure Planning (15/19)

□ Two-shift EV Taxi Scenario: EVs charge 3 or more times every day

- Impossible to make a long time charging at the off time (night time)
- Two-shift EV taxis always seek the fast charging.

Two issues to be solved:
 Where are these fast charging (FC) stations?
 What capacity for each FC station?

Electric Vehicle Charging Infrastructure Planning (16/19)

□ The EV driving range will achieve >= 200 miles in near future

E.g., the 2018 Nissan Leaf adds 40% more driving range than the EV model last year, up to 151 miles

Diapped Veer		Estimated charging frequency				
Planned Year	EV driving range	Private EVs 1		2-shift EV taxis		
2017	112 miles (180km)	le Charoino Infr	astructure Plan	243 times/day		
2020	200 miles	0.19 times/dav	0.95 times/dav	1.37 times/day		
	(320km)					
2025/2030?	300 miles (480km)	0.13times/day	0.63 times/day	0.91 times/day		

□ If so, the charging frequency for 1-shift EAV taxis drops to once per day (charging at night like private EVs)

Charging frequency of 2-shift EV taxis declines from 3 times to 2 times per day

Electric Vehicle Charging Infrastructure Planning (17/19)

□ Level-2 Normal Charging Facility Distribution

Scenario A with R = 180km

Electric Vehicle Charging Infrastructure Planning (18/19)

□ Fast Charging Facility Distribution

Scenario A with R = 180km

Comparison between 2 Scenarios

Electric Vehicle Charging Infrastructure Planning (19/19)

□ Comparison Between Two Scenarios

System indicators	Normal cha	rging facilities	Fast charging facilities		
System indicators	Scenario A	Scenario B	Scenario A	Scenario B	
Total number of chargers	7,249	4,853	519	303	
Average chargers per station	3.51	2.35	2.81	1.64	
Maximum chargers at station	37	22	10	5	

When driving range increases, the infrastructure requirement is decreased in all three measures:

- o total number of charging slots,
- o average number of slots per site,
- o maximum number of slots at site
- This indeed poses a problem for the implementation agency of how many charging slots to allocate in Phase 1 when EV driving range is relatively low.

26

Intelligent EV Charging Systems (1/4)

- With the massive deployment of EV chargers, these chargers may belong to different providers which include both public and private stakeholders
- EV users may need multiple EV charging service providers as they travel from one place to another.
- If providers use their own APP, finding an idle charger will be complicated
- A centralized and intelligent EV charging system will be needed to give customers access to the entire EV charging network

BlueSG charging network in Singapore

Known electric car charging networks around the world

Intelligent EV Charging Systems (2/4)

Technology Development

Peer to peer charging

P2P charging is a system where individuals publicly share their private EV charge points with other EV drivers.

Universal payment method

mandatory payment options to allow any user to access a charging point (e.g., via credit card)

Roaming

a cloud-like system that allows any player to join the entire system, offering services on any charger

Intelligent EV Charging Systems (3/4)

□ Advantage of intelligent EV charging systems

- Reduce their connection costs
- Use centralized data to optimize the charging network
- Foster competition by removing barriers to entry;
- Create simpler, standardized B2B interactions and transaction settlements
- Create a better customer experience

EV Drivers

Advantage EV roaming?

Intelligent EV Charging Systems (4/4)

□ Applications

• Korea (2020)

KEPCO developed an open roaming platform called ChargeLink for the first time in Korea to allow EV drivers to use all charging stations in the alliance which consists of 13 charging service providers.

Netherlands (2015)

Gathering leading e-mobility service providers in Europe, GIREVE helps ease drivers' charging by connecting Charge Point and Mobility operators. GIREVE has already gathered over 150,000 charging points from different networks across Europe.

EV Roaming Alliance

Conclusions

□ Analyzes the Unique Features of High Dense Asian Cities

Propose A Tangle 4-step Approach for EV Charging Infrastructure Planning

□ Introduce Intelligent EV Charging Systems

31

Thanks & Questions!

Department of Civil & Environmental Engineering Faculty of Engineering

