

Urban Space Race

Luis Martinez Lead Modeler, ITF/OECD

Luis.martinez@itf-oecd.org

VIRTUAL | VIRTUEL

XVI WORLD WINTER SERVICE AND ROAD RESILIENCE CONGRESS XVI° CONGRÈS MONDIAL DE LA VIABILITÉ HIVERNALE ET DE LA RÉSILIENCE ROUTIÈRE XVI CONGRESO MUNDIAL DE VIALIDAD INVERNAL Y RESILIENCIA DE LA CARRETERA

Outline

- Objective and Approach
- Methodology
- Streets that fit project
- Urban Freight Space Race project
- Main takeaways

Objective and Approach

Rethink urban space equilibrium

- Inclusive, Sustainable and Resilient Urban Transport
- Develop under a series of studies within <u>ITF Corporate</u> <u>Partnership Board</u>
 - <u>Streets that fit report</u>: Looks at the street space performance and balance between passenger modes
 - <u>Urban Freight Space Race</u>: Adds to the discussion the freight dimension and analysis the different strategies to decarbonise freight in the future

Methodology

- Investigates the rationale for street space allocation
 - 1. The trip purposes / commodities that can be effectively served by different modes /vehicles
 - 2. The space consumption needed to provide this mobility
 - 3. The environmental concerns
 - 4. <u>KEY</u>: The need for reallocation of space will be different at different urban levels and the impacts and needs in the centers and peripheries of urban agglomerations will be different
- Leverages an **agent-based model** for a mid-sized city
 - Incorporates optimisation algorithm for street space management including:
 - Efficiency (modal estimated demand), Safety (conflicts between vehicles and their speeds)
- Metrics:
 - Assess space use, accessibility/resilient, environmental performance, travel activity (modal share and vehicle split)

Streets that fit project

• Explores:

• Interaction among a broad range of mobility services and modes

5

Streets that fit project

• Explores:

- +
- Limited, dynamic and demand-responsive re-allocation of space
- Scenarios

Space Consumption: Baseline

Relative Space Consumption

Space Consumption: Full Implementation

Can we do better?

- 69% of trips could be realized by shared modes
- 41% by micromobility and non motorised transport
- In Full implementation:
 - Vkm and Pkm increase
 - Tank-to-wheel CO₂ emissions are reduced by 6%
 - PM emissions drop by 4%
- With electrification of the shared vehicle stocks:
 - up to -23% each for all measured pollutants

Modal diversion

Emissions

- In Full implementation scenario:
 - Replacement of private vehicle emission by shared modes (less CO₂ intensive)
 - Slight increase of vehicle-km but from smaller vehicles and more efficient
 - Reduction of emissions around 6%
 - Electric shared fleet would lead to a reduction of 23% of
 - ten ato-wheel-emissions

Urban Freight Space Race project

• Explores:

Passenger Mobility

Interaction among a passenger modes and freight vehicle

Freight and Parcel Delivery

13

Urban Freight Space Race project

• Scenarios:

Interaction among a passenger modes and freight vehicle

Do nothing	 Static Network + No new passenger modes or freight vehicles
Private action	 Implementation of freight decarbonisation measures relying in private initiative
Public management	 Implementation of freight decarbonisation measures relying in public action and regulation
Full Implementation	 Implementation of freight decarbonisation measures relying in responsible demand, private improvements and public intervention

Demand

Space Consumption

🔳 Light duty vehicle 📕 Medium truck 📕 Heavy truck 📮 Freight bicycle 💻 Light commercial vehicle 💻 Food and groceries deliveries 🔳 Shared transport for freight

Total space consumed for all freight activity per day (km²)

Space Consumption

Safety

- Optimising road management to match dynamically demand and safety can improve 15% overall safety (conflicts levels)
- Bicycles are the vehicle where safety changes would suffer higher increase as they coexist unsegregated several time with vehicles at much higher speed in the same space (35%)
- Pedestrians are also improved, by better traffic segregation but also from space that is converted from parking to sidewalks (12%)
- Better management also reduces double parking, specially for freight, improving also motorised vehicles fluidity, although at lough free flow speeds

Main takeaways

Safety and Predictability

- more modes in a shared space at different speeds → increase the likelihood of conflicts and accidents
- safe-system principles should guide the re-allocation of space
- default low and safe speeds could go a long way!
- Data and measurement
 - appropriate space consumption indicators for policy and appraisal assessments
- Building more Inclusive, more Sustainable and more Resilient urban transport requires adjustments to the space allocation rationale and the speed of urban activity

FEBRUARY 7-11 | 7-11 FÉVRIER | 7-11 DE FEBRERO

Thank you

Luis Martinez Lead Modeler, ITF/OECD

Luis.martinez@itf-oecd.org

VIRTUAL | VIRTUEL

XVI WORLD WINTER SERVICE AND ROAD RESILIENCE CONGRESS XVI° CONGRÈS MONDIAL DE LA VIABILITÉ HIVERNALE ET DE LA RÉSILIENCE ROUTIÈRE XVI CONGRESO MUNDIAL DE VIALIDAD INVERNAL Y RESILIENCIA DE LA CARRETERA

www.piarc-calgary2022.org