

Claudio Martani

Research associate

martani@ibi.baug.ethz.ch

VIRTUAL | VIRTUEL

XVI WORLD WINTER SERVICE AND ROAD RESILIENCE CONGRESS XVI° CONGRÈS MONDIAL DE LA VIABILITÉ HIVERNALE ET DE LA RÉSILIENCE ROUTIÈRE XVI CONGRESO MUNDIAL DE VIALIDAD INVERNAL Y RESILIENCIA DE LA CARRETERA

Resilience

Resilience targets

2

#PIARCCalgary2022

Step	Description
Define the transportation system	The measure of service and resilience require taking into consideration many characteristics of the transport system, including characteristics of: (i) the infrastructure (ii) the environment, and (iii) the organization. The exact characteristics to be taken into consideration depend on the specific transport system to be analysed.
Measure the service	Once the transport system is defined, the service can be measured. Measuring the service provided by transport infrastructure over time requires modelling: (i) how the service required from the infrastructure is expected to change in the future, and (ii) how the infrastructure is likely to change in the future.
Measure the resilience	Measuring the resilience of infrastructure requires measuring the difference between the service provided over time, when no hazard event occurs, and when a hazard event occurs. Measuring resilience requires estimating what will happen from the point in time that a hazard occurs to the point in time that the required service is once again provided, which depends on many different factors. Due to this complexity, measuring the resilience of transport infrastructure in detail might not be worthwhile, i.e. the gain in information may not be worth the effort. Instead, it might be worthwhile to use resilience indicators, i.e. indicators of how service will be affected due to a hazard event. The indicator set used will need to adequately capture the performance of all relevant aspects of the transport system.
Set resilience target	Setting targets of service and resilience requires that all relevant stakeholders involved with the decisions on the service and resilience to be provided determine: (i) the boundaries of the decisions, i.e. the legal and stakeholders requirements, (ii) agree on the method to define the targets and (iii) use the method agreed on to define the service and resilience targets. Targets can be set for either intervention costs or a measure of service, combinations of intervention costs and measures of service, and multiple hazards.

Demonstration using the A16 highway, in Italy

Disclaimer: The work presented in this presentation is a mere exercise, for which the vast majority of inputs have been set based on authors' assumptions, i.e. the inputs are realistic, but fictive and as such does not reflect the current situation of the highway chosen for the present application. Therefore the results cannot be in any way connected to the actual resilience of the real transport infrastructure.

Measures of resilience - Maximum expected restoration intervention costs and reductions in service following the event

Intervention	Description			
costs / Measure of service		Estimate	Equation	Estimate
Intervention costs (<i>Ii</i>)	The impact of executing restoration interventions	12'040	$(Ci \cdot Li)$	12'040
Travel time (Itt)	The impact of travel condition in	2'430	$(Pw \cdot Dpud \cdot Cwt \cdot D)$	2'970
	terms of time lost the impact of travel condition on the vehicle cost for work and leisure	540	$(Pw \cdot Dpud \cdot Clt \cdot D)$	
Safety (Is)	The impact due to the user being involved in an accident divided by property damage, injury, deaths	3'000	$\left(\left(\frac{Ppd}{100}\right)\cdot PDp\cdot P\right)$	54'000
		1'000	$\left(\left(\frac{Ppd}{100}\right)\cdot Ip\cdot P\right)$	
		50'000	$\left(\left(\frac{Ppd}{100}\right)\cdot Dpp\cdot P\right)$	
Socio-economic	The impact of people and goods	450	$(P \cdot Dpud \cdot D \cdot SECp)$	1'260
activities (Ise)	not being able to travel	810	$(G \cdot Dpud \cdot D \cdot SECg)$	
Total		70'270	(Ii + Itt + Is + Ise)	70'270

Measures of resilience - Resilience indicators

ID	Level 0	ID	Level 1	ID	Indicator	Scale	Measure
L.1	Infrastructure	L.1.1	Protective measures	1.1.1	The possibility of building a temporary alternative route for vehicles	2	0
				1.1.2	The possibility of using another means to satisfy transport demand		1
				1.1.3	The number of possible existing alternative ways to deviate vehicles	1	1
				1.1.4	The presence of a warning system	2	2
				1.1.5	The presence of a safe shutdown system	1	0
				1.1.6	The presence of emergency / evacuation paths	2	1
				1.1.7	The presence of special measures to help evacuate persons	2	0
		L.1.2	Preventive measures	1.2.1	Compliance with the current slope stability design code	2	2
				1.2.2	Presence of protection barriers	1	1
				1.2.3	Adequate protection barriers	1	1
		L.1.3	Condition state of the infrastructure	1.3.1	Age / Age of replacement of the warning system	3	2
				1.3.2	Condition state of infrastructure	5	4
				1.3.3	Condition state of protective barriers	5	2
				1.3.4	Condition state of assistance alert systems	5	2
				1.3.5	Expected condition state of infrastructure	3	1
				1.3.6	Expected condition state of protective barriers	3	2
				1.3.7	Expected condition state of assistance alert systems	2	2
				3.2.6	Expecetd time for construction	3	2
L.2	Environment	L.2.1	Physical	2.1.1	Height	2	1
				2.1.2	Accessibility	3	2
				2.1.3	Presence of persons/property below the infrastructure	1	0

Measures of resilience - Example of measures of resilience for 4 condition indicators

		Measures of resilience (10³€)						
Indicator	ltem	Intervention	Redu					
		cost	Travel time	Safety	Socio- econ.	Total		
	Max			14'273	333	14'606		
1.3.1 - The age / age of replacement of the warning system	Actual	Not relevant	Not relevant	4'758	111	4'869		
	Difference	lolovalit	roiovant	9'515	222	9'737		
	Max	12'040	2'970	54'000	1'260	70'270		
1.3.2 - The condition of the infrastructure providing service	Actual	2'408	594	10'800	252	14'054		
	Difference	9'632	2'376	43'200	1'008	56'216		
	Max	9'391	2'317	42'120	983	54'811		
1.3.3 - The condition of protection barriers	Actual	5'635	1'390	25'272	590	32'886		
	Difference	3'756	927	16'848	393	21'924		
4.9.4. The condition of the conjetence	Max	2'190	540	9'824	229	12'783		
alert systems	Actual	1'314	324	5'894	138	7'670		
	Difference	876	216	3'929	92	5'113		

Measures of resilience - For the whole transport system (left) and for the infrastructure, environment and organisation indicator categories (right)

Measures of resilience - For all indicators: Infrastructure

Measures of resilience - Difference between measures of resilience for the indicator expected condition state of protective barriers (1.3.6)

Setting the targets

Possible values					Measu	ures of re	silience (1	0³€)		
		Target	Target	Max/		Avoide	d reduction	ce		
	(10 ³ €)			Target	per value	Avoided intervene- tion costs	Travel time	Safety	Socio- econ.	Total
			Max	9'391	2'317	42'120	983	54'811	N/A	N/A
0	0		0	0	0	0	0	0	0.00	0
1	3'000		1	1'878	463	8'424	197	10'962	3.65	7'962
2	5'000	5	2	1'878	463	8'424	197	10'962	2.19	5'962
3	5'000		3	1'878	463	8'424	197	10'962	2.19	5'962
4	7'000		4	1'878	463	8'424	197	10'962	1.57	3'962
5	10'000		5	1'878	463	8'424	197	10'962	1.10	962

Setting the targets – sample of targets set

ID	Indicator		Scale Actual value		Costs to reach target	Benefit of reaching target	B/C	Net benefit of reaching
					103€	103€		(103€)
1.3.1	Age / Age of replacement of the warning system	3	2	0	0	0	0.00	0
1.3.2	Condition of infrastructure	5	4	3	0	0	0.00	0
1.3.3	Condition of protective barriers	5	2	5	30'000	54'811	1.10	24'811
1.3.4	Condition of assistance alert systems	5	2	1	2'500	2'557	1.02	57
1.3.5	Expected condition of infrastructure	3	1	2	35'000	45'910	1.15	10'910
1.3.6	Expected condition of protective barriers	3	2	0	0	0	0.00	0
1.3.7	Expected condition of assistance alert systems	2	2	0	0	0	0.00	0
3.1.1	The presence of a monitoring strategy	2	1	0	0	0	0.00	0
3.1.2	The presence of an maintenance strategy	2	1	2	25'000	33'193	1.11	8'193
3.1.3	The extent of interventions executed prior to the event	2	1	1	20'000	28'287	1.41	8'287
3.2.1	The presence of an emergency plan	2	1	2	9'000	36'912	3.08	27'912
3.2.2	Practice of the emergency plan	4	2	1	3'000	3'021	1.01	21

The presentation was based on:

• CEN Workshop Agreement CWA 17819 - Guideline for resilience assessment of transport infrastructures. Available at:

https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/cwa17819_2021.pdf.

- Adey, B. T., Martani, C., Kielhauser, C., Urqulijo Robles, I, Papathanasiou, N. and Burkhalter, M., Beltran-Hernando, I. (2020).
 FORESEE project Deliverable D1.1: Guideline to measure Levels of Service and resilience in infrastructures.
- Kielhauser, C., Martani, C., Adey, B. T. (2020). FORESEE project Deliverable D1.2: Guideline to set target levels of service and resilience for infrastructures.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769373

